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ABSTRACT

Using picture description speech for dementia detection has been
studied for 30 years. Despite the long history, previous models focus
on identifying the differences in speech patterns between healthy
subjects and patients with dementia but do not utilize the picture
information directly. In this paper, we propose the first dementia
detection models that take both the picture and the description
texts as inputs and incorporate knowledge from large pre-trained
image-text alignment models. We observe the difference between
dementia and healthy samples in terms of the text’s relevance to
the picture and the focused area of the picture. We thus consider
such a difference could be used to enhance dementia detection
accuracy. Specifically, we use the text’s relevance to the picture
to rank and filter the sentences of the samples. We also identified
focused areas of the picture as topics and categorized the sentences
according to the focused areas. We propose three advanced models
that pre-processed the samples based on their relevance to the
picture, sub-image, and focused areas. The evaluation results show
that our advanced models, with knowledge of the picture and large
image-text alignment models, achieve state-of-the-art performance
with the best detection accuracy at 83.44%, which is higher than the
text-only baseline model at 79.91%. Lastly, we visualize the sample
and picture results to explain the advantages of our models.
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1 INTRODUCTION

Dementia is a common and irreversible disease that affects more
than 6 million older adults in the United States [1]. The speech-
based analysis enables the detection of dementia in the early stage
at a lower cost and lower effort compared to other alternative detec-
tion methods. Researchers have explored speech-based dementia
detection via cookie theft picture description task for 30 years [4].
In such a task, participants describe the cookie theft picture using
spontaneous speech. The audio samples and the human-transcribed
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Figure 1: Human knowledge vs. Pre-trained knowledge

text samples are used to infer participants’ cognitive health sta-
tus, either Healthy Control (HC) or Alzheimer’s Disease (AD). A
significant challenge of dementia detection, different from speech
and language research, is that labels are not a property of the data
(i.e., speech) and can only be obtained from the participants at the
moment. Researchers aim to develop models to infer cognitive la-
bels from audio and text samples. Specifically, researchers explored
handcrafted and automatic acoustic and linguistic features and dis-
covered that the linguistic features of text samples produced the
most effective dementia detection models [8, 11, 22, 43].

Picture information has been incorporated into the model in
limited ways, e.g., information units [39], dialogue acts [13] and
eye tracking [3], as shown on the left of Figure 1. These models
explore the knowledge of the picture extracted by humans and
have not obtained full knowledge of the picture. The information
units are either defined as a set of words or phrases manually or
automatically using participants’ text samples. The dialogue acts are
generated based on fixed areas of the picture and used to label the
sentences with human effort. The eye tracking methods represent
the gaze features by manually defining 13 areas of interest on the
image while having no knowledge about the image contents in the
areas. The lack of the picture as an input to the model prevents
the model from accessing the full and original knowledge of the
picture. While deep learning models rapidly advance beyond human
capability, we envision that dementia detection models using the
original picture as an input can understand the picture description



task deeply and, as a result, outperform previous models that do
not use the picture as a direct input.

The image-text alignment models are advanced recently [25, 31,
38, 41] and have been successfully applied to many domains, e.g.,
image-text retrieval [32] and multi-modal sarcasm detection [27].
It can evaluate the relevance between a set of images and a set of
texts. With such models available, our preliminary results indicate
the difference between AD and HC samples in terms of the text’s
relevance to the picture and the focused area of the picture. We
envision utilizing such differences could help enhance the detection
accuracy. To this end, we propose advanced models that pre-process
the samples based on the image-text alignment information.

Our contributions are three-fold.

First, we analyze the different relevance of HC and AD samples to
the picture using image-text alignment and have two observations:
HC participants speak less quantity but more quality samples, and
in the description processes, HC participants focus on two more
areas of the picture than AD, i.e., the faucet area and the area outside
of the window.

Second, we propose three advanced models, i) using the picture
relevance to filter sentences of samples, ii) using the dementia-
sensitive sub-image to filter sentences of samples, and iii) using the
most text-relevant focused areas as topics to organize the sentences
of samples. While the baseline model takes samples as inputs, our
three advanced models take the samples processed using the picture
and image-to-text alignment models as inputs.

Third, we conduct extensive experiments to evaluate the pro-
posed three advanced models. The results show that they have
successfully explored the picture information and image-to-text
alignment models to improve the accuracy from baseline 79.91% to
(80.63% picture relevance, 83.44% sub-image relevance, and 82.49%
focused area). We further show our models achieve higher or equal
accuracy than existing works.

2 RELATED WORK

Speech and text learning for dementia detection. Researchers
exploited various speech tasks such as grocery shopping dialog [16],
speech and writing [15], telephone interview [6, 21] and voice as-
sistants [26, 30]. The picture description task using the cookie theft
picture [4, 28, 29] is one of the most popular speech tasks in demen-
tia detection. Although such a task has been studied for 30 years,
it suffers from limited data problems due to the high cost of data
collection. To enable effective learning with small data, researchers
applied deep transfer learning techniques and showed that auto-
matic features are more effective than handcrafted features [2, 43].
Recently, researchers further explored some more specific research
directions to improve learning with small data, such as automatic
speech recognition [33, 36], data augmentation [5, 19], intermedi-
ate pre-training [44], incorporating pause information [12, 40] and
prompt learning [37]. Different from these directions, our work is
the first to explore the picture information and knowledge from
language and image-text alignment models for dementia detection.

Picture information for dementia detection. Previous works
have explored “information units” from the cookie theft picture as a
manually crafted feature to implement the classification. The infor-
mation units are defined as a set of words or phrases either manually
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or automatically extracted from participants’ description texts. Im-
portantly, Croisile et al. [7] showed on average, AD participants
produce 9.23 information units, while HC participants produce
14.46 information units. The difference is statistically significant.
This evidence confirms that the relevance of HC descriptions to
the picture should be higher than AD descriptions. Other methods
like eye tracking and dialogue acts explore the visually or verbally
focused areas in the picture. The dialogue acts [13] are generated
based on eight areas of the picture and used to label the sentences
with human effort. Eye-tracking [3] is based on 13 human-defined
areas of interest to represent the eye-tracking features and then
combine them with language features for classification purposes,
employing early/late fusion techniques. We realize that using hu-
man efforts or adding another modality like eye-tracking comes
with a high cost. In addition, human-defined, fixed areas are sub-
optimal, which have limited consideration of the boundary of the
objects in the picture, and the corresponding models have a limited
understanding of the content in the areas.

Compared to the above methods, ours have the following ad-
vantages: i) Our model does not need any human efforts in feature
engineering and labeling. Information units and dialogue acts need
to be defined and labeled by humans, while our methods rely on the
image-text alignment model, which can be done automatically. ii)
Our model is more capable of processing picture information. Infor-
mation unit using words or phrases to represent the objects in the
picture. Dialogue act and eye-tracking used human-defined, fixed
areas. In comparison, with the image-text alignment technique, our
model processes all sub-images that may contain any objects and
can analyze the details of the picture information automatically.

Image-text alignment. There are many pre-trained multi-modal
models that emerged in the language model research area, e.g.,
CLIP [31], BLIP-2 [24], KOSMOS [20] and PaLM-E [10]. They bridge
the gap between images and text, allowing the model to compre-
hend and reason about visual content based on textual descriptions.
This opens up possibilities for various applications that require
understanding multimodal data, such as image captioning, visual
question answering, and cross-modal retrieval.

Image-text alignment can be applied to multiple multi-modal
tasks, such as image-text retrieval [32] and multi-modal sarcasm
detection [27]. One advantage of the image-text alignment models
is their great zero-shot performance [42]. In other words, it can be
used without further fine-tuning on the downstream tasks. We plan
to apply this zero-shot advantage in dementia detection. Specifically,
we envision the image-text alignment models can well understand
the contents of the cookie theft picture and the description texts
using the knowledge from large pre-trained datasets and produce
accurate relevance between the picture and the description texts.

3 BACKGROUND AND PRELIMINARY STUDY

We present the problem formation of dementia detection using the
picture description dataset, definitions including relevance between
images and texts, quantity and quality of samples, and focused areas
of the picture, and preliminary results of our approaches.
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Relevance  sentence num/sample word num/sample
HC cpc = 19.66 16.52 144.28
AD  cap = 14.57 17.70 158.35

Table 1: Preliminary results. Relevance scores are scaled by
the total number of sentences in all samples.

3.1 Problem formation

A picture description dataset for dementia detection Sy, =

{(x1,y1), (x2,92), - .., (xn,yn)} has n pairs of human transcribed
text samples and labels, where x; is a human-transcribed text sam-
ple of the cookie theft picture g by the i-th participant and y;
is the i-th participant’s label, either HC or AD. We denote Sx =
{x1,x2,- -+, xn}, Sx.HC as a subset of samples of the HC, and Sy ap
as a subset of samples of the AD. We have Sy = Sy gc U Sy ap. The
dementia detection problem is to infer a label y; from a sample x;.

3.2 Relevance between images and texts

CLIP model is a recent advance in multi-modal learning that can be
used to measure the relevance between the images and texts [31].
Formally, given m images and n texts as input, the CLIP model
outputs a m * n matrix M that represents the relevance scores
between the images and texts. Using this matrix, we define two
methods to explore the relevance between images and texts. An
image-to-texts match method aims to generate the relevance
scores of one image and multiple texts. We use the vector of the i-th
row in M to derive the relevance between the i-th image and all texts.
Specifically, a softmax function is used to convert the values in the
vector to probabilities, and the probabilities are used as relevance
scores. A text-to-images match method aims to generate the
relevance scores of one text and multiple images. We use the vector
of the j-th column in M to derive the relevance between the j-th
text and all images. The image-to-texts and text-to-image match
methods can be used to find the relevant texts and images.

3.3 Quantity and quality of samples

In this section, we explore the relevance of the description samples
of the HC and AD to the original cookie theft picture and investigate
whether the relevance of the HC and AD show difference. We aim to
study two aspects: quantity and quality. The quantity is the number
of word or sentences produced by participants. The quality is the
relevance of the speech to the cookie theft picture.

We define two relevance scores (cgc, cap) to represent the rel-
evance of all HC samples Sy pc and all AD samples Sy 4p to the
picture, respectively. We apply the image-to-texts match method
to calculate the relevance score c; j between the original cookie
theft picture and a sentence x;; of a sample x;. The relevance
score between a sample x; and the picture is then calculated as
Ci = X, ex; Ci,j- For all HC samples, we calculate the mean value
cgc of all relevance scores {c;|x; € Sx gc}. For all AD samples, we
calculate the mean value c4p of all relevance scores {c;|x; € Sy op}
(shown in Table 1). We have two observations: i) cgc > cap. ii) The
numbers of sentences and words per sample in Sy yc are smaller
than Sy 4p . We conclude that, in general, HC participants produce
lower quantity but higher quality samples than AD participants.

3.4 Focused areas of picture

“Focused areas” are the areas in the cookie theft picture that par-
ticipants’ description texts are most relevant to. The focused areas
in our paper are noticed and described by the participants. This
is different from the visually focused areas where an eye-tracking
device [3] is required to collect such information. Technically, we
use the image-text alignment to identify the focused areas in the
picture that have the highest relevance scores with all description
texts. We aim to find the different focused areas of the picture be-
tween HC and AD participants. Specifically, we adopt the selective
search method [35] to generate sub-images from the picture. Se-
lective search has been commonly used for region proposals in
object detection. For a sentence x; ; in a sample x;, we use the text-
to-images match method to find the sub-image that is the most
relevant to x; j. We then merge the sub-images most relevant to
the sentences of all samples in Sy gc in a heatmap, and merge the
sub-images most relevant to the sentences of all samples in Sy ap
in another heatmap, shown in Figure 4. We have two observations:
i) The common focused areas of HC and AD participants are cookie
jar and water on the floor. ii) HC focuses on more areas than AD,
i.e., the faucet area and the area outside of the window.

Our preliminary results have shown both the image-to-texts and
text-to-images match methods can reveal the different relevance of
HC and AD samples to the picture, which may be further used to
enhance dementia detection accuracy.

4 METHOD

We first propose a baseline text-only dementia detection model and
then develop three advanced models using the relevance between
images and texts.

4.1 Baseline model

Given a picture description dataset S, 4, a baseline dementia detec-
tion model can be implemented in the following steps: i) for each
sample x;, we use a pre-trained language model (e.g., BERT [9]) to
generate tokens of x; and generate embedding of each token. An
embedding e; of x; is defined as the average embedding of all tokens
of x;; i) we input embedding e; and label y; (either HC or AD) to
develop a classification model, e.g., SVM. The baseline model will
be used as a baseline for performance comparison and used as a
component of the advanced models where our text-to-images and
image-to-texts match methods will process the samples to improve
the performance.

4.2 Picture relevance model

The picture description samples from HC and AD may have raw
and noisy segments that positively or negatively impact dementia
detection. As we have successfully shown that the relevance scores
between the picture and the samples from HC and AD are different,
we aim to investigate the following research question: can we use
the picture to filter segments of samples to enhance accuracy?

To this end, we apply the image-to-texts match method using
original cookie theft picture g and each sentence x; j of a sample x;
to generate a relevance score c; j. By sorting c; j, we find out the
top-k; and bottom-k;, sentences of the sample x; relevant to the
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Figure 2: The focused area of HC (left) and AD (right). Red means highly focused and blue means lowly focused.

picture g. We denote the selection process of the top-k; and bottom-
kp, sentence as 6, and we have X; = (k, k) (xi,g) to represent a
subset of sentences most relevant and most irrelevant to the picture.
We then concatenate the sentences using their original order. If the
total number of sentences in a sample is smaller than k; + kj,, we
filter out the non-top-k; and non-bottom-k;, sentences and ensure
each sentence appears only once in the processed sample. Finally,
the processed samples and the corresponding labels are used to
develop the baseline dementia detection model.

4.3 Sub-image relevance model

The cookie theft picture has many objects. Description texts rele-
vant to sub-images with different objects may result in different
dementia detection performances. Thus, we aim to find a dementia-
sensitive sub-image where the sentences filtered using their rele-
vance to this sub-image might result in enhanced dementia detec-
tion accuracy. Specifically, inspired by the R-CNN object detection
pipeline [14], we first generate a set of sub-images using the selec-
tive search [35]. These sub-images are expected to be high recall
for finding objects. For each sub-image g5 and samples x; € Sy,
we derive Sy s = {%; = O(kyky) (Xis gs) for x; € Sx}, where the pro-
cessed sample X; includes k; most relevant and kz most irrelevant
sentences of all samples to the sub-image gs. Then, we extract the
embedding e; s for each processed sample x; (with label y;), and
calculate the pair-wise cosine similarity as

ds = Z Cos(ei,Saei’,s)_ Z Cos(ei,s,ei’,s)

Yi=yir Yi# Y

We aim to maximize ds by maximizing the cosine similarity of
embedding of the same label and minimizing the cosine similarity of
embedding of different labels. After calculating ds for all sub-images,
we define the dementia-sensitive sub-image gs as the sub-image
with the maximum score ds, derive Sys = {% = 5(k,,kb)(xis95)
for x; € Sy}, extract the embedding e; s of the processed samples
Xi, and use embedding e; s and the label y; to develop the baseline
dementia detection model.

4.4 Focused area model

Previous works [7, 23, 39] extracted information units from the
samples and used information units as topics. We are the first
to explore the topics using the focused areas of the cookie theft
picture, each focused area corresponding to a topic. Specifically,
we use selective search to generate sub-images. For each sentence
of all samples in Sy, we calculate its relevance score with every
sub-image g; using the text-to-images match method. Then we
sum up the relevance scores according to each sub-image. To select
the focused areas from these sub-images, we first perform non-
maximum suppression to filter out similar sub-images that have
lower summed scores, and then we select top—kf sub-images with
the highest summed relevance scores as focused areas. The k¢
focused areas are denoted as G = {g1,92, . - .gkf}. We treat each
focused area as a topic and organize the sentences using these topics.
For each sentence in a sample x;, we match it to one focused area
in G that has the highest relevance score using the text-to-images
match method. In other words, we organize the sentences in x; into
kg categories. For each category, we concatenate the corresponding
sentences and obtain their embedding. Finally, we concatenate the
embedding of all the topics and used the concatenated embedding
to develop the baseline dementia detection model.

5 EXPERIMENTS

We introduce the experimental data, implementation details, evalu-
ation protocol, and evaluation results of our models.

5.1 Data

ADReSS [29] is a cookie theft picture description dataset in English.
It was processed based on the Pitt Corpus dataset [4] with the
balanced label, age, and gender. All samples are human-transcribed
description texts. Each sample has a label, either HC or AD. ADReSS
has 108 samples for training and 48 samples for testing.
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Figure 3: The accuracy result of baseline model

5.2 Implementation detail

We used publicly available codes of BERT!, CLIP? and scikit-learn®
to implement our dementia detection models. We use the default
hyperparameters for the baseline model. We run all the experiments
with a single V100 GPU.

5.3 Few-shot evaluation protocol

Inspired by the evaluation protocol used in few-shot learning [17],
we propose an evaluation protocol for dementia detection with
limited data. We first combine the original training and testing
datasets into one dataset (e.g., 156 samples in ADReSS). We consider
the 2-way k-shot setting for our binary classification task. For each
round, we randomly select k samples of each class for training
and randomly select another 15 different samples of each class
for testing. We repeat this process for 600 rounds and report the
average performance.

We consider other evaluation protocols, e.g., cross-validation
or fixed training testing split have disadvantages: cross-validation
may overestimate the performance [34], and fixed training test-
ing splits are also infeasible for such a small dataset. In ADReSS
2020 [29], the standard evaluation protocol uses 48 samples for
testing. The different results on one sample can lead to around
2% accuracy difference. Thus, such evaluation produces unstable
results. Our proposed evaluation protocol achieves 79.67% accu-
racy in a 54-shots setting, while in the original ADReSS evaluation
protocol, the number of training samples for each class is 54 and
the accuracy on the testing set is 83.33%. We consider the original
ADReSS evaluation protocol overestimates the performance, and
our proposed evaluation protocol provides a more representative
result.

5.4 Results of baseline model

We report the 1-60 shots results of the baseline model on ADReSS
dataset in Figure 3. We observe that the accuracy increases rapidly

!https://huggingface.co/bert-base-uncased
Zhttps://huggingface.co/openai/clip-vit-base-patch32
3https://scikit-learn.org/

from 1-10 shots (60.82% to 75.81%), the accuracy increases slowly
from 10-40 shots (75.81% to 79.06%), and the accuracy saturates after
40-shots. The accuracy of 40-shots, 50-shots, 55-shots and 60-shots
are 79.06%, 79.58%, 80.23%, and 79.91%, respectively. The results
suggested that adding more samples after 40-shots in training may
lead to limited accuracy improvement.

5.5 Results of picture relevance model

We evaluate our picture relevance model with parameters k; =
[0,10],k; = [0, 10] using the 60-shots evaluation protocol. The
accuracy results are shown in Figure 4a where the position (0, 0) is
the result of the baseline model using all the sentences. We observe
that: i) The best accuracy is achieved with (k¢, kp) = (6,9) (80.63%)
statistical significant with t-test p=0.008 < 0.01 compared to the
baseline model. ii) Using only bottom-k; sentences but not using
top-k; sentences resulted in the best accuracy of 76.78%, worse
than the baseline 79.91%, which implies the highly picture-relevant
sentences play an important role in dementia detection. iii) Using
only top-k; sentences but not using bottom-k;, sentences resulted
in the best accuracy at 78.39% slightly worse performance than
the baseline 79.91%, which implies the effectiveness of picture-
irrelevant sentences in dementia detection. iv) Using top-k; (5 <
k; < 7) and bottom-ky, (kj > 5) resulted in equal or higher accuracy
than the baseline model, which confirms the effectiveness of our
proposed filtering process based on picture relevance.

Sample Visualization. We show the details of the processed
samples in Table 2. The picture-irrelevant sentences include other
dialog acts such as acknowledgment, instruction, question and an-
swering, stalling, and so on [13]. For example, the research assistant
may say, "just tell me all of the action" and "okay good". And the
participants may say "and that’s it Such non-picture-description
dialog acts are irrelevant to the picture, but could still be effec-
tive in dementia detection. By looking at the samples, we found
that AD participants spoke more picture-irrelevant sentences than
HC participants, and our advanced model took advantage of these
sentences.

5.6 Results of sub-image relevance model

Similarly, we evaluate the model with parameters k; = [0, 10] and
kp = [0, 10] using 60-shots evaluation protocol. For each case, we
report the result of the sub-image with the highest score ds in Fig-
ure 4b. We observed that the sub-image relevance model requires
less number of sentences to achieve higher accuracy than the pic-
ture relevance model. The sub-image relevance model achieved
the highest accuracy 83.44% with (k, k) = (5,3), while the pic-
ture relevance model achieved the highest accuracy at 80.63% with
(ks kp) = (6,9). It confirms that the relevance to the dementia-
sensitive sub-image is a more effective metric than the relevance to
the entire picture for dementia detection. Also, as shown in Table
3, the sub-image model requires fewer shots to the same accuracy
compared to the baseline and picture’s relevance model.

Picture visualization. In the best accuracy case (83.44% with
(kt, kp) = (5,3)), we found that the dementia-sensitive sub-image
located on the left part of the picture, as shown in Figure 5a. In
addition, other results close to the best accuracy use (4, 2), (4,4),
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Figure 4: Results of 60-shots evaluation

D Processed samples of the picture relevance model. Processed samples of the sub-image relevance Processed samples of focused area model. Red: fo-
Red: top-5 sentences. Blue: bottom-5 sentences. model. Red: top-5 sentences. Blue: bottom-3 sen-  cused area 1. Blue: focused area 3.
tences.
S207  justtell me all of the action. little girl with her finger  just tell me all of the action. little girl with her finger  just tell me all of the action. little girl with her finger
(HC) to her lips. the boy on the stool. stool tipping over. to her lips. the boy on the stool. stool tipping over. to her lips. the boy on the stool. stool tipping over.
getting cookies out of the cookie jar. uh mother getting cookies out of the cookie jar. uh mother getting cookies out of the cookie jar. uh mother
washing dishes. water running. sink overflowing. ~washing dishes. water running. sink overflowing. ~washing dishes. water running. sink overflowing.
xxx those curtains are blowing or not. that’s about  xxx those curtains are blowing or not. that’s about  xxx those curtains are blowing or not. that’s about
it. okay good. it. okay good. it. okay good.
S162 in the picture. I see uh two kids up at the cookie in the picture. I see uh two kids up at the cookie in the picture. I see uh two kids up at the cookie
(AD)  jar, one on a stool the other standing on the floor. jar, one on a stool the other standing on the floor. jar, one on a stool the other standing on the floor.
cupboard door is opened. mother’s washing the  cupboard door is opened. mother’s washing the  cupboard door is opened. mother’s washing the
dishes. the water is running overflowing the sink. dishes. the water is running overflowing the sink. dishes. the water is running overflowing the sink.
and uh there’s two cups and a plate on the counter. and uh there’s two cups and a plate on the counter. and uh there’s two cups and a plate on the counter.
and she’s washing holding a plate in her hand. cur-  and she’s washing holding a plate in her hand. cur-  and she’s washing holding a plate in her hand. cur-
tains at the windows. the cookie jar has the lid off.  tains at the windows. the cookie jar has the lid off.  tains at the windows. the cookie jar has the lid off.
hm hm that’s about it. cupboards underneath the hm hm that’s about it. cupboards underneath the hm hm that’s about it. cupboards underneath the
sink. cupboards underneath the other cupboards. sink. cupboards underneath the other cupboards. sink. cupboards underneath the other cupboards.
uh kid falling off the stool. the girl laughing at him.  uh kid falling off the stool. the girl laughing at him.  uh kid falling off the stool. the girl laughing at him.
cookies in the cookie jar with the lid off. he hasa  cookies in the cookie jar with the lid off. he hasa  cookies in the cookie jar with the lid off. he has a
cookie in his hand. and that’s it. okay good. cookie in his hand. and that’s it. okay good. cookie in his hand. and that’s it. okay good.
Table 2: Sample visualization
Top-k-bottom-k 1 5 10 20 30 40 50 60
Baseline 60.8212.10 72.988.71 75.81763 77.787.14 78.826.92 79.06632 79.59%.47 79.91705
(6, 9)-picture 60.7610.99 72.463 3¢ 75.397.49 77.89733 79.384.71 79.387.18 80.384.80 80.63¢.56
(5, 3)-sub-image 63.0812.66 75-078.46 78.866.86 81.376.51 81.646.38 82-226.06 82.986.26 83-446.36

Table 3: Comparison between baseline model, picture relevance model, and sub-image relevance model

(4,6), (4,7), use this same sub-image, which reveals that the left
part of the picture is the most dementia-sensitive.

Sample visualization. Table 2 shows the processed samples. As
we use the dementia-sensitive sub-image (left part of the picture),

compared to the processed sample using the picture relevance, the
sentences "and that’s it" and "okay good" no longer appear in the
bottom-k;, sentences; instead, the sentences relevant to the right
part of the picture are considered as the bottom-k;, sentences, e.g.,
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ID 10 Focused areas Frequencies
S1 boy 34 5.09%
S2 girl 4 4.41%
S3 woman 2,4 0.47%
S4 mother 2,4 3.65%
P1 kitchen 1,2,3,4,5 1.29%
P2 exterior 2,4 0.00%
(a) Sub-image of (5,3) (b) Top-5 focused areas 01 cookie 3.4 8.42%
02 jar 3,4 5.69%
Figure 5: Picture visualization 03 stool 4 516%
04 sink 1,2,4 6.12%
AI‘EE'IS 60-shots accuracy  Areas 60-shots accuracy 05 plat e 2.4 1.25%
Baielzme 22'2;7405 o — 06  dishcloth 1,2,4 0.00%
(1,2) 526.62 (1,2,3) 93 07  water 1,2,4,5 5.44%

(1,3) 82.49¢ .34 (1,2, 4) 74.287 53 0 b d

(1, 4) 76.337.13 (1,2,5) 77.236.97 8  cupboard 3.4 0.61%
(1,5) 76.097.15 (1,3, 4) 75.946 91 09  window 2,4 3.04%
(2,3) 78.91¢ 88 (1,3,5) 78.907 23 010 cabinet 3.4 0.39%
(2,4) 78.616.86 (1,4,5) 73.867.17 O11 dishes 2,4 6.12%
(2, 5) 76.806.96 (2,3,9) 80.156.59 012 curtains 2,4 1.33%
(3.9 79.636.76 (2,3,5) 79.336.58 013 faucet 1,2,4 0.36%
(3.5) 77.557.21 (2,4,5) 76.567.30 014 floor 1,2,4,5 3.01%
- b(14 Z) —— 75'187;2 y 3 4 5)d — 77'3?§92 015 counter 1,24 0.47%
able 4: Results of the focused area model using different 016 apron 1.2.4 0.36%

topics. We report the mean accuracy and the standard devia-
tion. (1, 2) means focused areas 1 and 2.

“"the water is running overflowing the sink" and "water running".
Note that, our model takes both top-k; and bottom-k; sentences as
inputs, and using the sub-image relevance may improve the quality
of the processed samples and enhance the accuracy.

5.7 Results of focused area model

We evaluate the focused area model using top-5 focused areas.
(Picture visualization) In Figure 5b, we visualize the top-5 focused
areas that have the highest relevance scores. The 1st-rank focused
area corresponds to the bottom right area, including the flowing
water, sink, and counter. The 2nd focused area covers the 1st area
and additionally includes the woman, dish, and window. The 3rd
focused area includes the boy and the cookie jar. The 4th focused
area is the entire picture. The 5th focused area is the floor area with
the flowing water.

The accuracy and standard deviation of the focused area model
are shown in Table 4 (refer to Table 7 in Appendix for full results).
We observe that i) when the number of samples used for training
is small (< 20), the focused area model performs worse than the
baseline model. We consider the focused area model is not effective
if the number of sentences to be categorized is small. ii) When the
number of samples is large (> 20), the focused area model (e.g., (1,2),
(1,3), (1,2,3)) outperforms the baseline model, which confirms that
the area-based structure of sentences enhances the dementia detec-
tion. iii) The focused areas should avoid overlapping. For example,

Table 5: Information units (IU) and focused areas 1-5. S: Sub-
ject; P: Place; O: Object.

using focused areas (1,2) is supposed to achieve higher accuracy
than (1,3) due to the higher ranking. However, focused areas (1,2)
have a large overlapping region, and categorizing the sentences
according to the overlapped focused areas is not effective. iv) Using
focused area 4 results in worse performance than the baseline. For
example, (1, 4): 76.33%, (4, 5): 77.78%, (1, 2, 4): 74.28%, (1, 3, 4): 75.94%,
and (1, 4, 5): 73.86%. We consider the worse performance is due to
the entire picture as focused area 4; this focused area 4 does not
help organize the sentences in a meaningful way.

We investigate the matching of the focused areas with informa-
tion units of subjects, places, and objects defined in [39], as shown
in Table 5. Focused area 4 covers the whole picture, which includes
all information units. Then, we checked the focused areas (1,2,3,5)
and found that 20 of all 22 information units are covered by at least
one of the focused areas (1,2,3,5). This confirms the consistency
between human-defined information units and identified focused
areas. In addition, the two information units not covered by the
focused areas (1,2,3,5) are "girl" and "stool", which locate in the
bottom left area of the picture. On the other hand, we checked that
the information units, from high word frequency to low, are cookie
(8.42%), sink (6.12%), dishes (6.12%), jar (5.69%), water (5.44%), stool
(5.16%), and girl (4.41%). The five top-ranked units are covered
by focused areas (1,2,3,5), and thus lower-ranked units "girl" and
"stool" in the bottom left area are not covered by the focused areas



Model Best accuracy
BERT-based classifier [18] 82.1%
Fine-tuned BERT-based classifier (Transfer learning) [2]  83.3%
ERNIE3p [40] 89.6%

GPT-D [25] 85%

Picture relevance (1,6) 89.58%
Sub-image relevance (10,9) 87.50%
Focused area (2, 3, 4) 83.33%

Table 6: Comparison between existing studies and our models

(1,2,3,5), but are covered by the focused area 7. In addition, the in-
formation units with fewer frequencies, e.g., counter (0.47%), apron
(0.36%), and faucet (0.36%) are covered by focused areas (1,2,3,5)
because their positions are close to the information units with high
frequencies. We conclude a fundamental difference between infor-
mation units and focused areas as follows: for information units
extracted from text samples, their high frequencies mean that they
were frequently used in participants’ description; for the focused
areas, their high relevance means some objects inside of the areas
have been described by participants, while other objects inside may
not be described.

Sample visualization. We show the processed samples of the
focused area model in Table 2. In this table, we found that sentences
in the HC sample are accurately categorized according to focused
areas, while some sentences in the AD sample are not. For example,
in the AD sample, "upboards underneath the sink" is categorized as
focused area 1, while the "upboards underneath the other cupboard"
is categorized as focused area 3. Both are supposed to be categorized
into focused area 1. We conclude that AD participants may produce
more difficult sentences to categorize than HC.

5.8 Comparison using original evaluation
protocol

Compared to the other existing studies, our methods consider inte-
grating information from the cookie theft picture into the model
automatically, while most of the other works focus on the infor-
mation from the speech and the text. In previous works [2, 18, 43],
adding a classification layer and fine-tuning achieves 80-83% accu-
racy, which is similar performance compared to using SVM (83%).
Guo [18] used a BERT-based classifier with an external dataset that
is not publicly available for fine-tuning. Yuan [40] using ERNIE
pre-training model achieved significant best accuracy 89.6% with 3
pauses features. Li [25] got the best accuracy at 85% by proposing
a method called GPT-D using pre-trained GPT-2 paired with an
artificially degraded version of itself to compute the ratio of the per-
plexities on language from AD and HC participants. As discussed
in section 5.3, the original ADReSS evaluation, using fixed training
and testing datasets, may result in overestimation. With limited
data in this task, fine-tuning may cause the overfitting problem.
To compare with existing works, we tested our model using the
original ADReSS evaluation protocol and achieved state-of-the-art
performance, as shown in Table 6. The picture relevance model with
(1, 6) achieved the highest accuracy of 89.58% among our works.
The sub-image relevance model with (10, 9) achieved an accuracy
of 87.50%. We conclude that our models achieved higher or equal
accuracy than existing works in the original evaluation protocol.

Youxiang Zhu et al.

6 DISCUSSION

Limitation of pre-processing. Our models filter or organize the
sentences of samples using their relevance to the picture, sub-
image, and focused areas. Alternatively, the relevance scores from
the image-text alignment models can be incorporated as parame-
ters into the dementia detection models to maximally preserve the
knowledge.

Sentence-level relevance. The CLIP model has a maximum
input length with a limit of 77 tokens. This restriction allows our
model to explore only sentence-level relevance. We envision our
models would be enhanced with image-text alignment models that
could take longer text samples as input.

Focused areas based on text and gaze. We derived the fo-
cused areas using the text description. These focused areas not only
include the described objects but also include the non-described
objects that are in positions close to the described objects. Without
the gaze data, we have no knowledge of whether or not participants
have visually focused on these non-described objects. In fact, we
envision the visually focused, but non-described objects could play
an important role in dementia detection because AD participants
may not recall the words to describe the objects. Future work can
collect both gaze and text data in the description process to enable
the analysis from this aspect.

7 CONCLUSION

In this paper, we explore the picture description dataset for de-
mentia detection by applying an image-text alignment technique.
Our models take the cookie theft picture as an input and evaluate
the relevance between the picture and the text samples using the
knowledge from image-text alignment models. Specifically, we first
confirm the picture relevance of HC and AD samples are differ-
ent. Then, we propose three advanced models where relevance is
used to filter or categorize the sentences of samples. We demon-
strate that the proposed models (80.63% picture relevance, 83.44%
sub-image relevance, 82.49% focused area) outperform the baseline
model (79.91%). Using picture visualization, we found the left part
of the picture is the most dementia-sensitive (83.44%), and the fo-
cused area model using the right part and cookie area as focused
areas resulted in the highest accuracy (82.49%). We confirm the
effectiveness of the image-text alignment model in picture descrip-
tion by using sample visualization and correlating human-defined
information units and the generated focused areas. Future works
include incorporating image-text relevance as parameters of the
model instead of filtering and categorizing the samples. Another
future work is to develop end-to-end training using the picture as
input.
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Topic 1 5 10 20 30 40 50 60
Baseline 60.8212.10 72.985.71 7581763 77.787.14 78.826.92 79.066.32 79.59¢.47 79.91705
(1, 2) 56.87979  67.3410.19 71.51948 76.72757 78.61¢70 79.94¢75 81.15633 80.83¢.42
(1, 3) 58.7410.98 67.879.79 72.939 02 77.487.19 80.46¢443 81.38¢57 82.45¢35 82.49¢.34
(1, 4) 57.7310.92 65.161034 69.1690¢ 73.4875¢ 74.8273¢ 75.53795 75.73703 76.337.13
(1, 5) 54.369390 59.471031 62.711957 69.96935 73.627¢7 74.97741 76.02709 76.09713
(2, 3) 59.2611.15 70.553.94 74.268.04 76.94794 77.92706 78.736.98 78.836.65 78.91¢.33
(2, 4) 57.021035 64.6810.10 69.19944 74.24759 75.787.10 77.14723 78.41g89 78.6143¢
(2,5) 57.231034 64.021047 69.61928 73.12757 74.36690 75.91705 76.547.17 76.80¢.9¢
(3, 4) 59.621152 70.949 14 74.487 55  77.36¢77 78.42¢52 79.14¢.89 79.76669 79.63¢.76
(3,5) 57.4910.48 67.539.093 71.34359 74.78733 76.007.17 76.66723 77.00733 77.557.91
(4, 5) 57.5410.42 65.311024 70.878385 74.97779 76.47¢73 77.046.97 77.65¢77 77.787.12
(1,2, 3) 56.409 g9 65.141045 69.59978 76.01749 79.12675 80.63¢53 81.19¢43 82.245.93
(1,2,4) 54.048 49 60.53109.05 65.03993 70.14g3.14 72.727¢5 73.51730 74.49719 74.28753
(1,2,5) 55.449 06 61.0210.06 64.76960 70.099 00 72.98753 74.93774 76.24700 77.23¢.97
(1,3,4) 54.929 13 63.999 31 67.369298 71.46748 74.01750 74.747.12 75.027.13 75.94¢.91
(1,3,5) 55.13895 61.161061 64.581122 71.333.64 74.637.95 76.06732 77.957.18 78.907.23
(1,4,5) 53.983.88 59.0610.08 63.59993 68.73921 72.03764 73.24703 73.877.92 73.867.17
(2,3,4) 57.039.8¢ 04.2610.24 69.6291¢ 75.49755 77.52731 78.81¢92 79.706.42 80.15¢ 59
(2,3,5) 57.47964 65.751030 70.37907 74.987¢2 77.077.04 77.42¢80 78.56631 79.33¢53
(2,4,5) 55.589 53 62.699 33 67.569 47 72.43739 74.367¢69 75.23797 76.18¢95 76.567 30
(3,4,5) 56.769. 8¢ 64.641070 69.97917 74.387¢3 76.42¢85 76.98734 78.167.04 77.52¢.92

Table 7: Results of the focused area model of different shots. We report the mean accuracy and the standard deviation. (1, 2)
means using focused areas 1 and 2.
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